Microchannel Gas Flow in the Multi-Flow Regime Based on the Lattice Boltzmann Method

Author:

Li Xiaoyu1,Ning Zhi1,Lü Ming1

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

In this work, a lattice Boltzmann method (LBM) for studying microchannel gas flow is developed in the multi-flow regime. In the LBM, by comparing previous studies’ results on effective viscosity in multi-flow regimes, the values of the rarefaction factor applicable to multi-flow regions were determined, and the relationship between relaxation time and Kn number with the rarefaction factor is given. The Kn number is introduced into the second-order slip boundary condition together with the combined bounce-back/specular-reflection (CBBSR) scheme to capture the gas flow in the multi-flow regime. Sensitivity analysis of the dimensionless flow rate to adjustable parameters using the Taguchi method was carried out, and the values of adjustable parameters were determined based on the results of the sensitivity analysis. The results show that the dimensionless flow rate is more sensitive to j than h. Numerical simulations of Poiseuille flow and pulsating flow in a microchannel with second-order slip boundary conditions are carried out to validate the method. The results show that the velocity profile and dimensionless flow rate simulated by the present numerical simulation method in this work are found in the multi-flow regime, and the phenomenon of annular velocity profile in the microchannel is reflected in the phases.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3