Mechanism of Catalytic CNTs Growth in 400–650 °C Range: Explaining Volcano Shape Arrhenius Plot and Catalytic Synergism Using both Pt (or Pd) and Ni, Co or Fe

Author:

Lobo Luis Sousa

Abstract

The Arrhenius plot of catalytic carbon formation from olefins on Ni, Co, and Fe has a volcano shape in the range 400–550 °C with reaction orders 0 (at lower T: Below ~500 °C) and one (at higher T: Above ~500 °C) at each side of the maximum rate. The reaction follows a catalytic route with surface decomposition of the gas (olefin) on the catalyst nanoparticle, followed by the bulk diffusion of carbon atoms and carbon nanotube growth on the opposite side. At the higher temperature region (500–550 °C), the initial surface reaction step controls the rate and the reaction order is one, both in olefins and hydrogen (H). This confirms that H is essential for the surface reaction to occur. This is very valuable information to get faster CNT growth rate at relatively low temperatures. The apparent activation energy observed must correspond with the surface reaction Ea corrected for the temperature dependence of the two molecules involved (olefin and H). Adding a noble metal (Pt, Pd) to the carbon formation catalyst is frequently found to increase the reaction rate further. This effect has been described as an H spillover since 1964. However, there is evidence that the bulk diffusion of H atoms prevails and does not “spillover” the surface diffusion. Diffusion of H atoms through the solids involved is easy, and the H atoms remain single (“independent”) until emerging on a surface.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3