Artificial Intelligence Methodologies Applied to Technologies for Screening, Diagnosis and Care of the Diabetic Foot: A Narrative Review

Author:

Chemello GaetanoORCID,Salvatori Benedetta,Morettini MicaelaORCID,Tura AndreaORCID

Abstract

Diabetic foot syndrome is a multifactorial pathology with at least three main etiological factors, i.e., peripheral neuropathy, peripheral arterial disease, and infection. In addition to complexity, another distinctive trait of diabetic foot syndrome is its insidiousness, due to a frequent lack of early symptoms. In recent years, it has become clear that the prevalence of diabetic foot syndrome is increasing, and it is among the diabetes complications with a stronger impact on patient’s quality of life. Considering the complex nature of this syndrome, artificial intelligence (AI) methodologies appear adequate to address aspects such as timely screening for the identification of the risk for foot ulcers (or, even worse, for amputation), based on appropriate sensor technologies. In this review, we summarize the main findings of the pertinent studies in the field, paying attention to both the AI-based methodological aspects and the main physiological/clinical study outcomes. The analyzed studies show that AI application to data derived by different technologies provides promising results, but in our opinion future studies may benefit from inclusion of quantitative measures based on simple sensors, which are still scarcely exploited.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference96 articles.

1. International consensus on the diabetic foot;BMJ,2000

2. Bowker, J.H., and Pfeifer, M.A. (2001). The Diabetic Foot, Mosby Inc.

3. Diabetic foot ulcers;Lancet,2003

4. A Critical Evaluation of Existing Diabetic Foot Screening Guidelines;Rev. Diabet. Stud.,2016

5. Standards for the development and methodology of the 2019 International Working Group on the Diabetic Foot guidelines;Diabetes Metab. Res. Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3