Hierarchical Ti-MOF Microflowers for Synchronous Removal and Fluorescent Detection of Aluminum Ions

Author:

Zhou Jianguo,Song Jieyao,Ma Guangqiang,Li Yongjian,Wei Yanan,Liu Fei,Zhou HongjianORCID

Abstract

Bifunctional luminescence metal-organic frameworks with unique nanostructures have drawn ongoing attention for simultaneous determination and elimination of metal ions in the aqueous environment, but still remain a great challenge. In this work, three-dimensional hierarchical titanium metal-organic framework (Ti-MOF) microflowers were developed by a secondary hydrothermal method for not only highly sensitive and selective detection of Al(III), but also simultaneously efficient decontamination. The resulting Ti-MOF microflowers with a diameter of 5–6 μm consisted of nanorods with a diameter of ∼200 nm and a length of 1–2 μm, which provide abundant, surface active sites for determination and elimination of Al(III) ions. Because of their substantial specific surface area and superior fluorescence characteristics, Ti-MOF microflowers are used as fluorescence probes for quantitative determination of Al(III) in the aqueous environment. Importantly, the specific FL enhancement by Al(III) via a chelation-enhanced fluorescence mechanism can be utilized for selective and quantitative determination of Al(III). The Al(III) detection has a linear range of 0.4–15 µM and a detection limit as low as 75 nM. By introducing ascorbic acid, interference of Fe(III) can be avoided to achieve selective detection of Al(III) under various co-existing cations. It is noteworthy that the Ti-MOF microflowers exhibit excellent adsorption capacity for Al(III) with a high adsorption capacity of 25.85 mg g−1. The rapid adsorption rate is consistent with a pseudo-second order kinetic model. Ti-MOF is a promising contender as an adsorbent and a fluorescent chemical sensor for simultaneous determination and elimination of Al(III) due to its exceptional water stability, high porosity, and intense luminescence.

Funder

National Natural Science Foundation of China

Key research and development projects of Anhui Province

Collaborative Innovation Program of Hefei Science Center, CAS

presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3