The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay

Author:

Xu Zi-Hong,Liu Jia,Li Bin,Wang Jun-Kai,Zeng Xi,Chen Zi-Jian,Hongsibsong SuratORCID,Huang Wei,Lei Hong-TaoORCID,Sun Yuan-Ming,Xu Zhen-LinORCID

Abstract

The improper and excessive use in agriculture of chlorpyrifos–methyl (CPSM) and chlorpyrifos–ethyl (CPSE) may affect the health of human beings. Herein, a fluorescence-based immunochromatographic assay (FICA) was developed for the simultaneous determination of CPSM and CPSE. A monoclonal antibody (mAb) with equal recognition of CPSM and CPSE was generated by the careful designing of haptens and screening of hybridoma cells. Instead of labeling fluorescence with mAb, the probe was labeled with goat-anti-mouse IgG (GAM-IgG) and pre-incubated with mAb in the sample. The complex could compete with CPS by coating antigen in the test line. The new format of FICA used goat-anti-rabbit IgG (GAR-IgG) conjugated with rabbit IgG labeled with fluorescence microspheres as an independent quality control line (C line). The novel strategy significantly reduced nonspecific reactions and increased assay sensitivity. Under the optimal conditions, the proposed FICA showed a linear range of 0.015–64 mg/L and limit of detection (LOD) of 0.015 mg/L for both CPSE and CPSM. The average recoveries of CPS from spiked food samples by FICA were 82.0–110.0%. The accuracy was similar to the gas chromatography–tandem mass spectrometry (GC-MS/MS) results. The developed FICA was an ideal on-site tool for rapid screening of CPS residues in foods.

Funder

Yangfan Program of Guangdong Provincial Department of Science and Technology, China

Generic Technique Innovation Team Construction of Modern Agriculture of Guangdong Province

Key Project of Guangdong Provincial High School

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3