Machine Learning Assisted Real-Time Label-Free SERS Diagnoses of Malignant Pleural Effusion due to Lung Cancer

Author:

Perumal JayakumarORCID,Lee Pyng,Dev KapilORCID,Lim Hann Qian,Dinish U. S.,Olivo Malini

Abstract

More than half of all pleural effusions are due to malignancy of which lung cancer is the main cause. Pleural effusions can complicate the course of pneumonia, pulmonary tuberculosis, or underlying systemic disease. We explore the application of label-free surface-enhanced Raman spectroscopy (SERS) as a point of care (POC) diagnostic tool to identify if pleural effusions are due to lung cancer or to other causes (controls). Lung cancer samples showed specific SERS spectral signatures such as the position and intensity of the Raman band in different wave number region using a novel silver coated silicon nanopillar (SCSNP) as a SERS substrate. We report a classification accuracy of 85% along with a sensitivity and specificity of 87% and 83%, respectively, for the detection of lung cancer over control pleural fluid samples with a receiver operating characteristics (ROC) area under curve value of 0.93 using a PLS-DA binary classifier to distinguish between lung cancer over control subjects. We have also evaluated discriminative wavenumber bands responsible for the distinction between the two classes with the help of a variable importance in projection (VIP) score. We found that our label-free SERS platform was able to distinguish lung cancer from pleural effusions due to other causes (controls) with higher diagnostic accuracy.

Funder

Agency of Science, Technology and Research

Bio-Medical Research Council of the Agency for Science, Technology and Research

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference30 articles.

1. Global Cancer Statistics, 2012;Torre;CA A Cancer J. Clin.,2015

2. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015;McGuire;Adv. Nutr.,2016

3. The IASLC Lung Cancer Staging Project: Proposals for the Revision of the TNM Stage Groupings in the Forthcoming (Seventh) Edition of the TNM Classification of Malignant Tumours;Goldstraw;J. Thorac. Oncol.,2007

4. SEER Cancer Statistics. Cancer Statistics Review 1975–2009 (Vintage 2009 Populations): Introduction, 2010.

5. Langwith, J. Diagnosis and Staging. Lung Cancer, 2007.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3