Dual Optical Nanosensor Based on Ormosil Nanoparticles for Monitoring O2 and pH

Author:

Ali RehamORCID

Abstract

Monitoring O2 and pH has excellent potential in different sensing applications, especially in biological and clinical applications. This report presents a protocol for synthesizing an optical dual nanosensor for those two parameters. The organically modified silica (ormosil) nanoparticles were prepared based on phenytrimethoxysilane in an aqueous solution using an acid-base one-pot strategy. Ormosil was selected as a lipophilic matrix for loading fluorescent O2-sensitive dye platinum(II)-tetrakis-(pentafluorophenyl) porphyrin (Pt-TPFPP), which was quenched in the presence of O2 gas and exhibited a considerable detection proficiency within a percentage range of (0–100%) O2. Commercially available drug ingredient salicylamide was labeled on the surface of the nanoparticles using a coupling agent (3-glycidoxypropyl) trimethoxysilane (GPTMS). For measuring pH, salicylamide acted for the first time as a pH-sensitive probe based on a turn-on process with increasing pH. The nanosensor displayed a significant pH detection efficiency in the range of (pH = 6–10). Salicylamide turn-on fluorescence was attributed to the excited state intramolecular transfer (ESIPT) process followed by the inter charge transfer (ICT). The presented dual nanosensor opens new opportunities as a promising candidate material for industrial systems and medical applications.

Funder

Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia

Qassim University

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silicon-based nanoparticles: Synthesis and recent applications in chemical sensing;TrAC Trends in Analytical Chemistry;2024-02

2. Fundamentals of Biosensors;Handbook of Nanosensors;2023-10-20

3. Green nanomaterials based nanosensors;Comprehensive Analytical Chemistry;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3