Study Hypoxic Response under Cyclic Oxygen Gradients Generated in Microfluidic Devices Using Real-Time Fluorescence Imaging

Author:

Chang Dao-MingORCID,Tung Yi-ChungORCID

Abstract

Oxygen plays important roles in regulating various biological activities under physiological and pathological conditions. However, the response of cells facing temporal variation in oxygen microenvironments has seldom been studied due to technical limitations. In this paper, an integrated approach to studying hypoxic response under cyclic oxygen gradients is developed. In the experiments, a cell culture system based on a microfluidic device is constructed to generate cyclic oxygen gradients with desired periods by alternately introducing gases with specific compositions into the microfluidic channels next to the cell culture channel separated by thin channel walls. Observation of the hypoxic responses is performed using real-time fluorescence imaging of dyes sensitive to extra- and intracellular oxygen tensions as well as intracellular calcium concentrations. Cellular hypoxic responses of human aortic smooth muscle cells (AoSMCs) and lung carcinoma epithelium (A549) cells, including intracellular oxygen and calcium levels, are measured. The results show that the two types of cells have different hypoxic responses to the applied cyclic oxygen gradients. With the capability of real-time cellular response monitoring under cyclic oxygen gradients, the developed approach provides a useful scheme to investigate hypoxic responses in vitro under microenvironments mimicking various in vivo physiological and pathological conditions.

Funder

Taiwan National Science and Technology Council

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3