Affiliation:
1. Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra 282005, India
Abstract
Crop residue burning emits a variety of air pollutants that drastically affect air quality, both locally and regionally. To study the impact of crop residue burning, in the present study, concentrations of particulate matter (PM2.5), trace gases (tropospheric ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs)) were recorded in Agra, a suburban downwind site. The study was conducted during the pre-harvest (15 September to 5 October 2021) and post-harvest periods (6 October to 10 November 2021). During the post-harvest period, PM2.5 concentrations were recorded to be three to four times higher than the NAAQ Standards (35 µg/m3), while O3 and VOC concentrations showed an increment of 16% and 30.4%, respectively. NOx and CO concentrations also showed higher levels (19.7 ± 7.5 ppb and 1498.5 ± 1077.5 ppb) during this period. Moderate resolution imaging spectroradiometer (MODIS), along with air mass backward trajectory analysis (HYSPLIT Model), were used to detect fire hotspots that suggested that the enhanced pollutant levels may be due to the burning of crop residue in agricultural fields over the northwest Indo-Gangetic Plain (NW-IGP). Field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) analysis showed high K concentrations during the post-harvest period, which may be attributed to crop residue burning or biomass combustion.
Funder
ISRO-GBP ATCTM project and the Department of Science and Technology (DST), Govt. of India
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献