Abstract
Fibroblast growth factor receptor 2 (FGFR2) gene fusions are bona fide oncogenic drivers in 10–15% of intrahepatic cholangiocarcinoma (CCA), yet currently there are no cell lines publically available to study endogenous FGFR2 gene fusions. The ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate large yet precise chromosomal rearrangements has presented the possibility of engineering endogenous gene fusions for downstream studies. In this technical report, we describe the generation of an endogenous FGFR2–Bicaudal family RNA binding protein 1 (BICC1) fusion in multiple independent cholangiocarcinoma and immortalized liver cell lines using CRISPR. BICC1 is the most common FGFR2 fusion partner in CCA, and the fusion arises as a consequence of a 58-megabase-sized inversion on chromosome 10. We replicated this inversion to generate a fusion product that is identical to that seen in many human CCA. Our results demonstrate the feasibility of generating large megabase-scale inversions that faithfully reproduce human cancer aberrations.
Funder
Austrian Science Fund
National Institutes of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献