Blockchain Enabled Anonymous Privacy-Preserving Authentication Scheme for Internet of Health Things

Author:

Rajasekaran Arun SekarORCID,Maria Azees,Rajagopal MaheswarORCID,Lorincz JosipORCID

Abstract

The Internet of Health Things (IoHT) has emerged as an attractive networking paradigm in wireless communications, integrated devices and embedded system technologies. In the IoHT, real-time health data are collected through smart healthcare sensors and, in recent years, the IoHT has started to have an important role in the Internet of Things technology. Although the IoHT provides comfort in health monitoring, it also imposes security challenges in maintaining patient data confidentiality and privacy. To overcome such security issues, in this paper, a novel blockchain-based privacy-preserving authentication scheme is proposed as an approach for achieving efficient authentication of the patient without the involvement of a trusted entity. Moreover, a secure handover authentication mechanism that ensures avoiding the patient re-authentication in multi-doctor communication scenarios and revoking the possible malicious misbehavior of medical professionals in the IoHT communication with the patient is developed. The performance of the proposed authentication and handover scheme is analyzed concerning the existing state-of-the-art authentication schemes. The results of the performance analyses reveal that the proposed authentication scheme is resistant to different types of security attacks. Moreover, the results of analyses show that the proposed authentication scheme outperforms similar state-of-the-art authentication schemes in terms of having lower computational, communication and storage costs. Therefore, the novel authentication and handover scheme has proven practical applicability and represents a valuable contribution to improving the security of communication in IoHT networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient and secure CLAKA protocol for blockchain-aided wireless body area networks;Expert Systems with Applications;2024-05

2. A Secure Wireless Communication in Vehicular Ad-Hoc Network System;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

3. A comprehensive secure system enabling healthcare 5.0 using federated learning, intrusion detection and blockchain;PeerJ Computer Science;2024-01-10

4. Securing Blockchain-Based IoT Systems: A Review;IEEE Access;2024

5. Unlocking the Potential of Artificial Intelligence (AI) for Healthcare;Artificial Intelligence;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3