Estimating the Impact of a Recuperative Approach on the Efficiency of Thermoelectric Cooling

Author:

Jurķāns Vilnis1ORCID,Blūms Juris1ORCID

Affiliation:

1. Institute of Technical Physics, Faculty of Natural Science and Technology, Riga Technical University, LV-1048 Riga, Latvia

Abstract

Thermoelectric cooling is a prospective technology that has a lot of advantages; however, its main drawback is its low efficiency compared to other technologies. A lot of scientific research is aimed at the improvement of the efficiency of thermoelectric cooling, including the development of new thermoelectric materials, innovative structures, and better power management strategies. The present work further explores a self-developed recuperative power management approach, which takes advantage of the thermoelectric element’s ability to work as an electrical generator. This study relied on the thermal–electrical analogy method to develop a model that is capable of describing the impact of recuperation on the cooling performance while preserving the simplest configuration possible. The influence of different variables was estimated by three suggested quantities for evaluating the gains, losses, and rationality of the recuperative approach. A recovery of up to 10% of the electrical energy supplied to the thermoelectric element was observed experimentally. The ratio between the recovered energy and induced heat losses did not exceed a factor of 0.9. It is concluded that the recuperation process is reasonable only in the case of unavoidable interruption of the cooling process when average-performance thermoelectric elements are used.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3