Optimal Maintenance Policy for Equipment Submitted to Multi-Period Leasing as a Circular Business Model

Author:

Ben Mabrouk Amel1,Chelbi Anis12ORCID,Aguir Mohamed Salah3,Dellagi Sofiene4

Affiliation:

1. Mediterranean School of Business, South Mediterranean University, Tunis 1053, Tunisia

2. RIFTSI Laboratory LR20ES02, National Higher Engineering School of Tunis, University of Tunis, Tunis 1008, Tunisia

3. National Engineering School of Carthage, University of Carthage, Charguia II 2035, Tunisia

4. LGIPM Laboratory, University of Lorraine, 57073 Metz, France

Abstract

The leasing of various types of equipment plays a significant role in reducing resource consumption, reducing the need for frequent replacements, and lessening the environmental impact of equipment manufacturing and disposal. This paper examines a maintenance policy for equipment that is leased multiple times throughout its lifespan. If the equipment fails to perform as expected within the basic and extended warranty durations, the lessor makes minimal repairs at its own expense. Once the warranty period has elapsed, the lessor is still responsible for carrying out any necessary repairs, but the lessee is required to pay for them. The warranty periods are not uniform. To reduce the frequency of breakdowns, the lessor carries out preventive maintenance (PM) between successive lease periods, with the aim of reducing the age of the equipment to some extent. The costs associated with PM depend on the set of actions to be performed and their associated efficiency in terms of age reduction. A mathematical model is proposed to simultaneously find the optimal efficiency levels of PM to be carried out between successive lease periods and the optimal extended warranty periods to be offered to lessees in order to maximize the lessor’s expected total profit throughout the equipment’s lifecycle. To demonstrate the use of the developed model, a numerical example and a sensitivity study are discussed. Our model demonstrates its ability to provide valuable insights and facilitate decision-making in the establishment of leasing contracts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3