Deep Learning Based Switching Filter for Impulsive Noise Removal in Color Images

Author:

Radlak KrystianORCID,Malinski LukaszORCID,Smolka BogdanORCID

Abstract

Noise reduction is one of the most important and still active research topics in low-level image processing due to its high impact on object detection and scene understanding for computer vision systems. Recently, we observed a substantially increased interest in the application of deep learning algorithms. Many computer vision systems use them, due to their impressive capability of feature extraction and classification. While these methods have also been successfully applied in image denoising, significantly improving its performance, most of the proposed approaches were designed for Gaussian noise suppression. In this paper, we present a switching filtering technique intended for impulsive noise removal using deep learning. In the proposed method, the distorted pixels are detected using a deep neural network architecture and restored with the fast adaptive mean filter. The performed experiments show that the proposed approach is superior to the state-of-the-art filters designed for impulsive noise removal in color digital images.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference75 articles.

1. Hybrid Filter Based on Fuzzy Techniques for Mixed Noise Reduction in Color Images

2. Removal of High-Density Impulsive Noise in Giemsa Stained Blood Smear Image Using Probabilistic Decision Based Average Trimmed Filter;Sen,2020

3. Image noise models;Boncelet,2005

4. CCD noise removal in digital images

5. Automatic Estimation and Removal of Noise from a Single Image

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3