KeyNet: An Asymmetric Key-Style Framework for Watermarking Deep Learning Models

Author:

Jebreel Najeeb MoharramORCID,Domingo-Ferrer JosepORCID,Sánchez David,Blanco-Justicia AlbertoORCID

Abstract

Many organizations devote significant resources to building high-fidelity deep learning (DL) models. Therefore, they have a great interest in making sure the models they have trained are not appropriated by others. Embedding watermarks (WMs) in DL models is a useful means to protect the intellectual property (IP) of their owners. In this paper, we propose KeyNet, a novel watermarking framework that satisfies the main requirements for an effective and robust watermarking. In KeyNet, any sample in a WM carrier set can take more than one label based on where the owner signs it. The signature is the hashed value of the owner’s information and her model. We leverage multi-task learning (MTL) to learn the original classification task and the watermarking task together. Another model (called the private model) is added to the original one, so that it acts as a private key. The two models are trained together to embed the WM while preserving the accuracy of the original task. To extract a WM from a marked model, we pass the predictions of the marked model on a signed sample to the private model. Then, the private model can provide the position of the signature. We perform an extensive evaluation of KeyNet’s performance on the CIFAR10 and FMNIST5 data sets and prove its effectiveness and robustness. Empirical results show that KeyNet preserves the utility of the original task and embeds a robust WM.

Funder

H2020 Leadership in Enabling and Industrial Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3