New Developer Metrics for Open Source Software Development Challenges: An Empirical Study of Project Recommendation Systems

Author:

Şeker AbdulkadirORCID,Diri BanuORCID,Arslan HalilORCID

Abstract

Software collaboration platforms where millions of developers from diverse locations can contribute to the common open source projects have recently become popular. On these platforms, various information is obtained from developer activities that can then be used as developer metrics to solve a variety of challenges. In this study, we proposed new developer metrics extracted from the issue, commit, and pull request activities of developers on GitHub. We created developer metrics from the individual activities and combined certain activities according to some common traits. To evaluate these metrics, we created an item-based project recommendation system. In order to validate this system, we calculated the similarity score using two methods and assessed top-n hit scores using two different approaches. The results for all scores with these methods indicated that the most successful metrics were binary_issue_related, issue_commented, binary_pr_related, and issue_opened. To verify our results, we compared our metrics with another metric generated from a very similar study and found that most of our metrics gave better scores that metric. In conclusion, the issue feature is more crucial for GitHub compared with other features. Moreover, commenting activity in projects can be equally as valuable as code contributions. The most of binary metrics that were generated, regardless of the number of activities, also showed remarkable results. In this context, we presented improvable and noteworthy developer metrics that can be used for a wide range of open-source software development challenges, such as user characterization, project recommendation, and code review assignment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Empirical Study of the Impact of COVID-19 on OSS Development;2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C);2022-12

2. Find potential partners: A GitHub user recommendation method based on event data;Information and Software Technology;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3