Segregation of NiTe2 and NbTe2 in p-Type Thermoelectric Bi0.5Sb1.5Te3 Alloys for Carrier Energy Filtering Effect by Melt Spinning

Author:

Kim Hyun-SikORCID,Kim TaeWanORCID,An Jiwoo,Kim Dongho,Jeon Ji Hoon,Kim Sang-il

Abstract

The formation of secondary phases of NiTe2 and NbTe2 in p-type Bi0.5Sb1.5Te3 thermoelectric alloys was investigated through in situ phase separation by using the melt spinning process. Adding stoichiometric Ni, Nb, and Te in a solid-state synthesis process of Bi0.5Sb1.5Te3, followed by rapid solidification by melt spinning, successfully segregated NiTe2 and NbTe2 in the Bi0.5Sb1.5Te3 matrix. Since heterointerfaces of Bi0.5Sb1.5Te3 with NiTe2 and NbTe2 form potential barriers of 0.26 and 0.08 eV, respectively, a low energy carrier filtering effect can be expected; higher Seebeck coefficients and power factors were achieved for Bi0.5Sb1.5Te3(NiTe2)0.01 (250 μV/K and 3.15 mW/mK2), compared to those of Bi0.5Sb1.5Te3 (240 μV/K and 2.69 mW/mK2). However, there was no power factor increase for NbTe2 segregated samples. The decrease in thermal conductivity was seen due to the possible additional phonon scattering by the phase segregations. Consequently, zT at room temperature was enhanced to 0.98 and 0.94 for Bi0.5Sb1.5Te3(NiTe2)0.01 and Bi0.5Sb1.5Te3(NbTe2)0.01, respectively, compared to 0.79 for Bi0.5Sb1.5Te3. The carrier filtering effect induced by NiTe2 segregations with an interface potential barrier of 0.26 eV effectively increased the Seebeck coefficient and power factor, thus improving the zT of p-type Bi0.5Sb1.5Te3, while the interface potential barrier of 0.08 eV of NbTe2 segregation appeared to be too small to induce an effective carrier filtering effect.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3