Abstract
The complexity of high-performance computing (HPC) workflows is an important issue in the provision of HPC cloud services in most national supercomputing centers. This complexity problem is especially critical because it affects HPC resource scalability, management efficiency, and convenience of use. To solve this problem, while exploiting the advantage of bare-metal-level high performance, container-based cloud solutions have been developed. However, various problems still exist, such as an isolated environment between HPC and the cloud, security issues, and workload management issues. We propose an architecture that reduces this complexity by using Docker and Singularity, which are the container platforms most often used in the HPC cloud field. This HPC cloud architecture integrates both image management and job management, which are the two main elements of HPC cloud workflows. To evaluate the serviceability and performance of the proposed architecture, we developed and implemented a platform in an HPC cluster experiment. Experimental results indicated that the proposed HPC cloud architecture can reduce complexity to provide supercomputing resource scalability, high performance, user convenience, various HPC applications, and management efficiency.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献