Abstract
Small-scale experimental studies of melt splashing upon the impact of water are presented here, with a focus on the fluid dynamics and thermal aspects of these interactions. Gravity-accelerated droplets and forced short-duration water jets interacted with liquid Rose’s alloy superheated to 100–200 degrees above its melting point. A repeatability study was performed for better-control of the gravity fall of a droplet. The amount of perturbation on the melt surface was obtained from a video recording, and indicated the existence of three principal stages of interaction. The cases using the forced water jet demonstrated the occurrence of a cumulative jet of melt following the collapse of the cavity caused by the water impact. Also, it was shown that numerous small-diameter melt droplets were scattered by the primary impulse, and small-scale micro-eruptions were observed, which generated small but fast melt droplets at the later stages of interaction.
Funder
Russian Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献