Study on Effective Temporal Data Retrieval Leveraging Complex Indexed Architecture

Author:

Kvet MichalORCID,Kršák Emil,Matiaško Karol

Abstract

Current intelligent information systems require complex database approaches managing and monitoring data in a spatio-temporal manner. Many times, the core of the temporal system element is created on the relational platform. In this paper, a summary of the temporal architectures with regards to the granularity level is proposed. Object, attribute, and synchronization group perspectives are discussed. An extension of the group temporal architecture shifting the processing in the spatio-temporal level synchronization is proposed. A data reflection model is proposed to cover the transaction integrity with reflection to the data model evolving over time. It is supervised by our own Extended Temporal Log Ahead Rule, evaluating not only collisions themselves, but the data model is reflected, as well. The main emphasis is on the data retrieval process and indexing with regards to the non-reliable data. Undefined value categorization supervised by the NULL_representation data dictionary object and memory pointer layer is provided. Therefore, undefined (NULL) values can be part of the index structure. The definition and selection of the technology of the master index is proposed and discussed. It allows the index to be used as a way to identify blocks with relevant data, which is of practical importance in temporal systems where data fragmentation often occurs. The last part deals with the syntax of the Select statement extension covering temporal environment with regards on the conventional syntax reflection. Event_definition, spatial_positions, model_reflection, consistency_model, epsilon_definition, monitored_data_set, type_of_granularity, and NULL_category clauses are introduced. Impact on the performance of the data manipulation operations is evaluated in the performance section highlighting temporal architectures, Insert, Update and Select statements forming core performance characteristics.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Cloud Native Architectures: Design High-Availability and Cost-Effective Applications for the Cloud Kindle Edition;Laszewski,2018

2. Practical Oracle Cloud Infrastructure: Infrastructure as a Service, Autonomous Database, Managed Kubernetes, and Serverless;Jakobczyk,2020

3. A conceptual model for the logical design of temporal databases

4. Oracle Database 12c: The Complete Reference;Bryla,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Impact of Table and Index Compression on Data Access Time and CPU Costs;Information Systems and Technologies;2022

2. The Impact of Table and Index Compression;2021 19th International Conference on Emerging eLearning Technologies and Applications (ICETA);2021-11-11

3. Time-Series-Based Queries on Stable Transportation Networks Equipped with Sensors;ISPRS International Journal of Geo-Information;2021-08-07

4. Query Rewriting for Incremental Continuous Query Evaluation in HIFUN;Algorithms;2021-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3