SADG: Self-Aligned Dual NIR-VIS Generation for Heterogeneous Face Recognition

Author:

Zhao Pengcheng,Zhang FupingORCID,Wei Jianming,Zhou Yingbo,Wei Xiao

Abstract

Heterogeneous face recognition (HFR) has aroused significant interest in recent years, with some challenging tasks such as misalignment problems and limited HFR data. Misalignment occurs among different modalities’ images mainly because of misaligned semantics. Although recent methods have attempted to settle the low-shot problem, they suffer from the misalignment problem between paired near infrared (NIR) and visible (VIS) images. Misalignment can bring performance degradation to most image-to-image translation networks. In this work, we propose a self-aligned dual generation (SADG) architecture for generating semantics-aligned pairwise NIR-VIS images with the same identity, but without the additional guidance of external information learning. Specifically, we propose a self-aligned generator to align the data distributions between two modalities. Then, we present a multiscale patch discriminator to get high quality images. Furthermore, we raise the mean landmark distance (MLD) to test the alignment performance between NIR and VIS images with the same identity. Extensive experiments and an ablation study of SADG on three public datasets show significant alignment performance and recognition results. Specifically, the Rank1 accuracy achieved was close to 99.9% for the CASIA NIR-VIS 2.0, Oulu-CASIA NIR-VIS and BUAA VIS-NIR datasets, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. A New Face Recognition Method for Intelligent Security

2. Memetic Approach for Matching Sketches with Digital Face Imageshttps://repository.iiitd.edu.in/jspui/handle/123456789/27

3. BFRVSR: A Bidirectional Frame Recurrent Method for Video Super-Resolution

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3