Advanced Chirp Transform Spectrometer with Novel Digital Pulse Compression Method for Spectrum Detection

Author:

Zhao Quan,Tong LingORCID,Gao Bo

Abstract

Based on chirp transform and pulse compression technology, chirp transform spectrometers (CTSs) can be used to perform high-resolution and real-time spectrum measurements. Nowadays, they are widely applied for weather and astronomical observations. The surface acoustic wave (SAW) filter is a key device for pulse compression. The system performance is significantly affected by the dispersion characteristics match and the large insertion loss of the SAW filters. In this paper, a linear phase sampling and accumulating (LPSA) algorithm was developed to replace the matched filter for fast pulse compression. By selecting and accumulating the sampling points satisfying a specific periodic phase distribution, the intermediate frequency (IF) chirp signal carrying the information of the input signal could be detected and compressed. Spectrum measurements across the entire operational bandwidth could be performed by shifting the fixed sampling points in the time domain. A two-stage frequency resolution subdivision method was also developed for the fast pulse compression of the sparse spectrum, which was shown to significantly improve the calculation speed. The simulation and experiment results demonstrate that the LPSA method can realize fast pulse compression with adequate high amplitude accuracy and frequency resolution. Compared to existing digital pulse compression technology, this method can significantly reduce the number of required calculations, especially for measurements of sparse signals.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3