Role of Magnetic Anisotropy on the Hyperthermia Efficiency in Spherical Fe3−xCoxO4 (x = 0–1) Nanoparticles

Author:

Das Raja,Kim Ngoc Pham,Attanayake Supun B.,Phan Manh-Huong,Srikanth Hariharan

Abstract

The use of magnetic nanoparticles in the treatment of cancer using alternating current hyperthermia therapy has shown the potential to replace or supplement conventional cancer treatments, radiotherapy and chemotherapy, which have severe side effects. Though the nearly spherical sub-10 nm iron oxide nanoparticles have their approval from the US Food and Drug Administration, their low heating efficiency and removal from the body after hyperthermia treatment raises serious concerns. The majority of magnetic hyperthermia research is working to create nanomaterials with improved heating efficiency and long blood circulation time. Here, we have demonstrated a simple strategy to enhance the heating efficiency of sub-10 nm Fe3O4 nanoparticles through the replacement of Fe+2 ions with Co+2 ions. Magnetic and hyperthermia experiments on the 7 nm Fe3−xCoxO4 (x = 0–1) nanoparticles showed that the blocking temperature, the coercivity at 10 K, and the specific absorption rate followed a similar trend with a maximum at x = 0.75, which is in corroboration with the theoretical prediction. Our study revealed that the heating efficiency of the Fe3−xCoxO4 (x = 0–1) nanoparticles varies not just with the size and saturation magnetization but also with the magnetocrystalline anisotropy of the particles.

Funder

National Foundation for Science and Technology Development

Ministry of Science and Technology

U.S. Department of Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3