Modeling and Optimization Sustainable Forest Supply Chain Considering Discount in Transportation System and Supplier Selection under Uncertainty

Author:

Baghizadeh KomeylORCID,Zimon DominikORCID,Jum’a LuayORCID

Abstract

In recent decades, the forest industry has been growingly expanded due to economic conditions, climate changes, environmental and energy policies, and intense demand changes. Thus, appropriate planning is required to improve this industry. To achieve economic, social and environmental goals, a supply chain network is designed based on a multi-period and multi-product Mixed-Integer Non-Linear Programming (MINLP) model in which the objective is to maximize the profit, minimize detrimental environmental effects, improve social effects, and minimize the number of lost demands. In addition, to improve forest industry planning, strategic and tactical decisions have been implemented throughout the supply chain for all facilities, suppliers and machinery. These decisions significantly help to improve processes and product flows and to meet customers’ needs. In addition, because of the presence of uncertainty in some parameters, the proposed model was formulated and optimized under uncertainty using the hybrid robust possibilistic programming (HRPP-II) approach. The ε-constraint technique was used to solve the multi-objective model, and the Lagrangian relaxation (LR) method was utilized to solve the model of more complex dimensions. A case study in Northern Iran was conducted to assess the efficiency of the suggested approach. Finally, a sensitivity analysis was performed to determine the impact of important parameters on objective functions. The results of this study show that increasing the working hours of machines instead of increasing their number, increasing the capacity of some facilities instead of establishing new facilities and expanding the transport fleet has a significant impact on achieving predetermined goals.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3