Sustainable Solutions for Mitigating Water Scarcity in Developing Countries: A Comprehensive Review of Innovative Rainwater Storage Systems

Author:

Ssekyanzi Geoffrey12ORCID,Ahmad Mirza Junaid3,Choi Kyung-Sook34ORCID

Affiliation:

1. Department of Food Security and Agricultural Development, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Production, Rakai District Local Government, Kyotera P.O. Box 21, Uganda

3. Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

4. Institute of Agricultural Sciences & Technology, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

As global water resources decline and demand increases due to population growth and climate change, innovative rainwater storage systems (IRSSs) have become crucial. This review examines the potential of IRSSs to sustainably address rainwater challenges by analyzing key factors that influence their success. Drawing on research from Scopus and Google Scholar, it evaluates IRSSs in both urban and rural settings across different countries and regions, focusing on their contribution to Sustainable Development Goal (SDG) 6. This review highlights how social, environmental, economic, and policy factors affect the success of IRSS compared to traditional systems common in developing nations. IRSSs can outperform traditional methods in sustainability, encouraging their adoption. However, there is a significant gap in policy integration that needs to be addressed for successful implementation. Further research is needed to better understand the contributing factors and their role in achieving sustainability. Integrating rainwater harvesting into national water policies could offer valuable guidance for policymakers and water resource managers in addressing issues like urban floods, water scarcity, and related social and environmental challenges in developing countries.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3