Fine-Grained Face Annotation Using Deep Multi-Task CNN

Author:

Celona LuigiORCID,Bianco Simone,Schettini Raimondo

Abstract

We present a multi-task learning-based convolutional neural network (MTL-CNN) able to estimate multiple tags describing face images simultaneously. In total, the model is able to estimate up to 74 different face attributes belonging to three distinct recognition tasks: age group, gender and visual attributes (such as hair color, face shape and the presence of makeup). The proposed model shares all the CNN’s parameters among tasks and deals with task-specific estimation through the introduction of two components: (i) a gating mechanism to control activations’ sharing and to adaptively route them across different face attributes; (ii) a module to post-process the predictions in order to take into account the correlation among face attributes. The model is trained by fusing multiple databases for increasing the number of face attributes that can be estimated and using a center loss for disentangling representations among face attributes in the embedding space. Extensive experiments validate the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate Face Annotations utilizing Deep CNN;2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2023-05-12

2. Fair Contrastive Learning for Facial Attribute Classification;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

3. A Smart Mirror for Emotion Monitoring in Home Environments;Sensors;2021-11-09

4. Fault Diagnosis Method for Rolling Mill Multi Row Bearings Based on AMVMD-MC1DCNN under Unbalanced Dataset;Sensors;2021-08-15

5. Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation;International Journal of Interactive Multimedia and Artificial Intelligence;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3