Investigation of the Microcharacteristics of Asphalt Mastics under Dry–Wet and Freeze–Thaw Cycles in a Coastal Salt Environment

Author:

Zhang Qinling,Huang Zhiyi

Abstract

In the coastal areas of southeastern China, high temperatures and humidity in the summer and microfreezing in the winter, as well as a high concentration of salt spray in the environment, seriously deteriorate the durability of asphalt mixtures. Therefore, the microcharacteristics of asphalt mastics (asphalt mixed with mineral filler) under the effect of chlorine salt and “dry–wet and freeze–thaw” (DW-FT) cycles were investigated by Fourier-transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and atomic force microscopy (AFM) techniques. Two factors, including asphalt mastic types (base and styrene-butadiene-styrene (SBS)-modified mastics) and numbers of DW-FT cycles, were considered based on the natural environment. Regression functions were established to explore the relationship between the FTIR, GPC, and AFM indexes. The results indicate that there were no chemical reactions between the asphalt and filler because the infrared spectrum of the base and SBS-modified mastics were similar. With the increase of the salt “DW-FT” cycle numbers, the sulfoxide index and large molecular size ratios ( L M S % ) increased, and the surface roughness ( R q and R a ) of the morphology decreased, as illustrated by a flatting mastics surface phenomenon in the AFM test. Regression analysis confirmed that there was a high correlation between the FTIR, GPC, and AFM indexes, and formation of the bee structures was closely related to the long chain index. The SBS-modified mastics had a better antiaging performance with a lower increase in the sulfoxide index after the salt “DW-FT” cycles in the coastal environment.

Funder

the Zhejiang Provincial Important Research Project of China

Publisher

MDPI AG

Subject

General Materials Science

Reference70 articles.

1. Marine Manual;Guo,1984

2. Seawater salt spray on harm and preventive measures of asphalt pavement;He;Fujian Traffic Sci. Technol.,2009

3. Research on impact of salt mist-temperature coupling actions on performance of asphalt mixture;Zhao;Highway,2018

4. Soluble salt damage to thin bituminous road and runway surfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3