Laser Surface Hardening of Gun Metal Alloys

Author:

Naeem Samia,Mehmood Tahir,Wu K. M.,Khan Babar Shahzad,Majid Abdul,Siraj Khurrum,Mukhtar Aiman,Saeed Adnan,Riaz Saira

Abstract

The effect of laser irradiation with different numbers of laser shots on the microstructure, the surface, and the hardness of gun metal alloy was studied by a KrF pulsed excimer laser system, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Vickers hardness test. The influence of 100–500 laser shots was irradiated on the surface hardness profile and on the microstructure of gunmetal alloy. XRD results showed the maximum 2θ shift, the maximum full width of half maximum FWHM, the maximum dislocation density, and the minimum crystallite size for the sample irradiated with 300 laser shots. The hardness was measured in three different regions at the laser irradiated spot, and it was found that maximum hardness was present at the heat affected zone for all samples. The hardness value of the un-irradiated sample of gun metal was 180, and the value increased up to 237 by raising the number of laser shots up to 300. The peak value of surface hardness of the laser treated sample was 32% higher than the un-irradiated sample. The Raman shift of the un-exposed sample was 605 cm−1 and shifted to a higher value of wave number at 635 cm−1 at 300 laser shots. The hardness value was decreased by further increasing the number of laser shots up to 500. The samples irradiated with 400 and 500 laser shots exhibited smaller hardness and dislocation defect density, which was assigned to possible annealing caused by irradiation.

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. The compromise between mechanical properties and corrosion resistance in copper and aluminium alloys for marine applications

2. Introduction to Machine Design;Bhandari,2013

3. Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application;Ion,2005

4. The Grove Encyclopedia of Materials and Techniques in Art;Ward,2008

5. The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3