Performance of Foundry Sand Concrete under Ambient and Elevated Temperatures

Author:

Bilal HazratORCID,Yaqub Muhammad,Rehman Sardar Kashif UrORCID,Abid Muhammad,Alyousef RayedORCID,Alabduljabbar Hisham,Aslam Fahid

Abstract

Waste foundry sand (WFS) is the by-product of the foundry industry. Utilizing it in the construction industry will protect the environment and its natural resources, and enable sustainable construction. WFS was employed in this research as a fractional substitution of natural sand by 0%, 10%, 20%, 30%, and 40% in concrete. Several tests, including workability, compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS), ultrasonic pulse velocity (USPV), Schmidt rebound hammer number (RHN), and residual compressive strengths (RCS) tests were performed to understand the behavior of concrete before and after exposure to elevated temperatures. Test findings showed that the strength characteristics were increased by including WFS at all the phases. For a substitute rate of 30%, the maximum compressive, splitting tensile, and flexural strength were observed. Replacement with WFS enhanced the 28-day compressive, splitting tensile, and flexural strength by 7.82%, 9.87%, and 10.35%, respectively at a 30% replacement level, and showed continuous improvement until the age of 91 days. The RCS of foundry sand concrete after one month of air cooling at ambient temperature after exposing to 300 °C, 400 °C, 500 °C, 600 °C, 700 °C, and 800 °C was found to be in the range of 67.50% to 71.00%, 57.50% to 61.50%, 49.00% to 51.50%, 38% to 41%, 31% to 35% and 26% to 31.5% of unheated compressive strength values for 0% to 40% replacement of WFS, respectively. The RCS decreases with increasing temperature; however, with increasing WFS, the RCS was enhanced in comparison to the control samples. In addition, the replacement of 30% yielded excellent outcomes. Hence, this study provides a sustainable construction material that will preserve the Earth’s natural resources and provide a best use of WFS.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3