Application of Least-Squares Support-Vector Machine Based on Hysteresis Operators and Particle Swarm Optimization for Modeling and Control of Hysteresis in Piezoelectric Actuators

Author:

Baziyad Ayad G.ORCID,Nouh Adnan S.,Ahmad Irfan,Alkuhayli AbdulazizORCID

Abstract

Nanopositioning systems driven by piezoelectric actuators are widely used in different fields. However, the hysteresis phenomenon is a major factor in reducing the positioning accuracy of piezoelectric actuators. This effect makes the task of accurate modeling and position control of piezoelectric actuators challenging. In this paper, the learning and generalization capabilities of the model are efficiently enhanced to describe and compensate for the rate-independent and rate-dependent hysteresis using a kernel-based learning method. The proposed model is inspired by the classical Preisach hysteresis model, in which a set of hysteresis operators is used to address the problem of mapping, and then least-squares support-vector machines (LSSVM) combined with a particle swarm optimization (PSO) algorithm are used for identification. Two control schemes are proposed for hysteresis compensation, and their performance is evaluated through real-time experiments on a nanopositioning platform. First, an inverse model-based feedforward controller is designed based on the LSSVM model, and then a combined feedback/feedforward control scheme is designed using a classical control strategy (PID) to further enhance the tracking performance. For performance evaluation, different datasets with a variety of hysteresis loops are used during the simulation and experimental procedures. The results show that the proposed method is successful in enhancing the generalization capabilities of LSSVM training and achieving the best tracking performance based on the combination of feedforward control and PID feedback control. The proposed control scheme outperformed the inverse Preisach model-based control scheme in terms of both positioning accuracy and execution time. The control scheme that uses the LSSVM based on nonlinear autoregressive exogenous (NARX) models has significantly less computational complexity compared to our control scheme but at the expense of accuracy.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3