An Inertial Impact Piezoelectric Actuator Designed by the Asymmetric Friction Principle and Achieved by Laser Texturing of the Driving Feet

Author:

Sun Wuxiang,Liu Yanwei,Li Xuan,Xu Zhi,Yang Zhaojun,Huang Hu

Abstract

An asymmetric friction principle is newly proposed for the design of inertial impact piezoelectric actuators. There are two ways to achieve asymmetric frictions: either by tuning the positive pressure or by tuning the friction coefficient. Compared with tuning the positive pressure by an asymmetric structure, the structural parameters can be reduced by employing a symmetric structure and tuning the friction coefficient. In this study, an asymmetric friction inertial impact actuator was developed using a symmetric compliant mechanism (SCM), and the asymmetric frictions were realized by laser texturing of the driving feet at one end of the SCM. Four kinds of microstructures were initially fabricated on the driving feet, and their friction properties were experimentally tested. Accordingly, two kinds of microstructures, namely Ta and Tb microstructures, were selected. Output characteristics of the actuator with these two microstructures were measured and comparatively analyzed. The experimental results indicate that the actuator could achieve stable step motion, and the output characteristics were affected by the fabricated microstructure, as it determined the friction coefficient. The actuator with the Tb microstructure achieved a maximum speed of 2.523 mm/s, a resolution of 188 nm, a vertical loading capacity of 2 N and a horizontal loading capacity of 0.6 N, whereas the actuator with the Ta microstructure had a higher resolution of 74 nm. This study provides a novel idea for the design of asymmetric friction inertial impact actuators by tuning the friction coefficient.

Funder

National Natural Science Foundation of China

Jilin University

Ministry of Education of the People's Republic of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3