Author:
Sun Wuxiang,Liu Yanwei,Li Xuan,Xu Zhi,Yang Zhaojun,Huang Hu
Abstract
An asymmetric friction principle is newly proposed for the design of inertial impact piezoelectric actuators. There are two ways to achieve asymmetric frictions: either by tuning the positive pressure or by tuning the friction coefficient. Compared with tuning the positive pressure by an asymmetric structure, the structural parameters can be reduced by employing a symmetric structure and tuning the friction coefficient. In this study, an asymmetric friction inertial impact actuator was developed using a symmetric compliant mechanism (SCM), and the asymmetric frictions were realized by laser texturing of the driving feet at one end of the SCM. Four kinds of microstructures were initially fabricated on the driving feet, and their friction properties were experimentally tested. Accordingly, two kinds of microstructures, namely Ta and Tb microstructures, were selected. Output characteristics of the actuator with these two microstructures were measured and comparatively analyzed. The experimental results indicate that the actuator could achieve stable step motion, and the output characteristics were affected by the fabricated microstructure, as it determined the friction coefficient. The actuator with the Tb microstructure achieved a maximum speed of 2.523 mm/s, a resolution of 188 nm, a vertical loading capacity of 2 N and a horizontal loading capacity of 0.6 N, whereas the actuator with the Ta microstructure had a higher resolution of 74 nm. This study provides a novel idea for the design of asymmetric friction inertial impact actuators by tuning the friction coefficient.
Funder
National Natural Science Foundation of China
Jilin University
Ministry of Education of the People's Republic of China
Subject
Control and Optimization,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献