Abstract
The identification of underground geohazards is always a difficult issue in the field of underground public safety. This study proposes an interactive visualization framework for underground geohazard recognition on urban roads, which constructs a whole recognition workflow by incorporating data collection, preprocessing, modeling, rendering and analyzing. In this framework, two proposed sampling point selection methods have been adopted to enhance the interpolated accuracy for the Kriging algorithm based on ground penetrating radar (GPR) technology. An improved Kriging algorithm was put forward, which applies a particle swarm optimization (PSO) algorithm to optimize the Kriging parameters and adopts in parallel the Compute Unified Device Architecture (CUDA) to run the PSO algorithm on the GPU side in order to raise the interpolated efficiency. Furthermore, a layer-constrained triangulated irregular network algorithm was proposed to construct the 3D geohazard bodies and the space geometry method was used to compute their volume information. The study also presents an implementation system to demonstrate the application of the framework and its related algorithms. This system makes a significant contribution to the demonstration and understanding of underground geohazard recognition in a three-dimensional environment.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献