An Efficient Row Key Encoding Method with ASCII Code for Storing Geospatial Big Data in HBase

Author:

Xiong QuanORCID,Zhang XiaodongORCID,Liu WeiORCID,Ye SijingORCID,Du Zhenbo,Liu DiyouORCID,Zhu Dehai,Liu ZheORCID,Yao XiaochuangORCID

Abstract

Recently, increasing amounts of multi-source geospatial data (raster data of satellites and textual data of meteorological stations) have been generated, which can play a cooperative and important role in many research works. Efficiently storing, organizing and managing these data is essential for their subsequent application. HBase, as a distributed storage database, is increasingly popular for the storage of unstructured data. The design of the row key of HBase is crucial to improving its efficiency, but large numbers of researchers in the geospatial area do not conduct much research on this topic. According the HBase Official Reference Guide, row keys should be kept as short as is reasonable while remaining useful for the required data access. In this paper, we propose a new row key encoding method instead of conventional stereotypes. We adopted an existing hierarchical spatio-temporal grid framework as the row key of the HBase to manage these geospatial data, with the difference that we utilized the obscure but short American Standard Code for Information Interchange (ASCII) to achieve the structure of the grid rather than the original grid code, which can be easily understood by humans but is very long. In order to demonstrate the advantage of the proposed method, we stored the daily meteorological data of 831 meteorological stations in China from 1985 to 2019 in HBase; the experimental result showed that the proposed method can not only maintain an equivalent query speed but can shorten the row key and save storage resources by 20.69% compared with the original grid codes. Meanwhile, we also utilized GF-1 imagery to test whether these improved row keys could support the storage and querying of raster data. We downloaded and stored a part of the GF-1 imagery in Henan province, China from 2017 to 2018; the total data volume reached about 500 GB. Then, we succeeded in calculating the daily normalized difference vegetation index (NDVI) value in Henan province from 2017 to 2018 within 54 min. Therefore, the experiment demonstrated that the improved row keys can also be applied to store raster data when using HBase.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3