An Unsupervised Crop Classification Method Based on Principal Components Isometric Binning

Author:

Ma Zhe,Liu ZheORCID,Zhao Yuanyuan,Zhang Lin,Liu DiyouORCID,Ren Tianwei,Zhang XiaodongORCID,Li Shaoming

Abstract

The accurate and timely access to the spatial distribution information of crops is of great importance for agricultural production management. Although widely used, supervised classification mapping requires a large number of field samples, and is consequently costly in terms of time and money. In order to reduce the need for sample size, this paper proposes an unsupervised classification method based on principal components isometric binning (PCIB). In particular, principal component analysis (PCA) dimensionality reduction is applied to the classification features, followed by the division of the top k principal components into equidistant bins. Bins of the same category are subsequently merged as a class label. Multitemporal Gaofen 1 satellite (GF-1) remote sensing images were collected over the southwest of Hulin City and Luobei County of Hegang City, Heilongjiang Province, China in order to map crop types in 2016 and 2017. Our proposed method was compared with commonly used classifiers (random forest, K-means and Iterative Self-Organizing Data Analysis Techniques Algorithm (ISODATA)). Results demonstrate PCIB and random forest to have the highest classification accuracies, reaching 82% in 2016 in the southwest of Hulin City. In Luobei County in 2016, the accuracies of PCIB and random forest were determined as 81% and 82%, respectively. It can be concluded that the overall accuracy of our proposed method meets the basic requirements of classification accuracy. Despite exhibiting a lower accuracy than that of random forest, PCIB does not require a large field sample size, thus making it more suitable for large-scale crop mapping.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference60 articles.

1. Remote Sensing Monitoring of Agricultural Conditions;Yang,2005

2. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey

3. Remote sensing monitoring of maize planting area at town level;Guo;Trans. CSAE,2011

4. Quantitative relationships between leaf area index and canopy reflectance spectra of wheat;Li;Chin. J. Appl. Ecol.,2006

5. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3