Large Common Plansets-4-Points Congruent Sets for Point Cloud Registration

Author:

Fotsing Cedrique,Nziengam Nafissetou,Bobda ChristopheORCID

Abstract

Point cloud registration combines multiple point cloud data sets collected from different positions using the same or different devices to form a single point cloud within a single coordinate system. Point cloud registration is usually achieved through spatial transformations that align and merge multiple point clouds into a single globally consistent model. In this paper, we present a new segmentation-based approach for point cloud registration. Our method consists of extracting plane structures from point clouds and then, using the 4-Point Congruent Sets (4PCS) technique, we estimate transformations that align the plane structures. Instead of a global alignment using all the points in the dataset, our method aligns 2-point clouds using their local plane structures. This considerably reduces the data size, computational workload, and execution time. Unlike conventional methods that seek to align the largest number of common points between entities, the new method aims to align the largest number of planes. Using partial point clouds of multiple real-world scenes, we demonstrate the superiority of our method compared to raw 4PCS in terms of quality of result (QoS) and execution time. Our method requires about half the execution time of 4PCS in all the tested datasets and produces better alignment of the point clouds.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference32 articles.

1. 3D Surveying Technologies and Applications: Point Clouds and Beyond;Bosché,2015

2. 3D Scanning: A Comprehensive Survey;Daneshmand;Scand. J. For. Res.,2018

3. 4-points congruent sets for robust pairwise surface registration

4. Closed-form solution of absolute orientation using unit quaternions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3