Abstract
Utilizing indoor spaces has become important with the progress of localization and positioning technologies. Covering and partitioning problems play an important role in managing, indexing, and analyzing spatial data. In this paper, we propose a multi-stage framework for indoor space partitioning, each stage of which can be flexibly adjusted according to target applications. One of the main features of our framework is the parameterized constraint, which characterizes the properties and restrictions of unit geometries used for the covering and partitioning tasks formulated as the binary linear programs. It enables us to apply the proposed method to various problems by simply changing the constraint parameter. We present basic constraints that are widely used in many covering and partitioning problems regarding the indoor space applications along with several techniques that simplify the computation process. We apply it to particular applications, device placement and route planning problems, in order to give examples of the use of our framework in the perspective on how to design a constraint and how to use the resulting partitions. We also demonstrate the effectiveness with experimental results compared to baseline methods.
Funder
Ministry of Land, Infrastructure and Transport
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献