Abstract
This article presents the Base Point Split (BPSplit) algorithm to generate a complex polygon skeleton based on sets of vector data describing lakes and rivers. A key feature of the BPSplit algorithm is that it is dependent on base points representing the source or mouth of a river or a stream. The input values of base points determine the shape of the resulting skeleton of complex polygons. Various skeletons can be generated with the use of different base points. Base points are applied to divide complex polygon boundaries into segments. Segmentation supports the selection of triangulated irregular network (TIN) edges inside complex polygons. The midpoints of the selected TIN edges constitute a basis for generating a skeleton. The algorithm handles complex polygons with numerous holes, and it accounts for all holes. This article proposes a method for modifying a complex skeleton with numerous holes. In the discussed approach, skeleton edges that do not meet the preset criteria (e.g., that the skeleton is to be located between holes in the center of the polygon) are automatically removed. An algorithm for smoothing zigzag lines was proposed.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献