Traffic Control Recognition with Speed-Profiles: A Deep Learning Approach

Author:

Cheng HaoORCID,Zourlidou StefaniaORCID,Sester MonikaORCID

Abstract

Accurate information of traffic regulators at junctions is important for navigating and driving in cities. However, such information is often missing, incomplete or not up-to-date in digital maps due to the high cost, e.g., time and money, for data acquisition and updating. In this study we propose a crowdsourced method that harnesses the light-weight GPS tracks from commuting vehicles as Volunteered Geographic Information (VGI) for traffic regulator detection. We explore the novel idea of detecting traffic regulators by learning the movement patterns of vehicles at regulated locations. Vehicles’ movement behavior was encoded in the form of speed-profiles, where both speed values and their sequential order during movement development were used as features in a three-class classification problem for the most common traffic regulators: traffic-lights, priority-signs and uncontrolled junctions. The method provides an average weighting function and a majority voting scheme to tolerate the errors in the VGI data. The sequence-to-sequence framework requires no extra overhead for data processing, which makes the method applicable for real-world traffic regulator detection tasks. The results showed that the deep-learning classifier Conditional Variational Autoencoder can predict regulators with 90% accuracy, outperforming a random forest classifier (88% accuracy) that uses the summarized statistics of movement as features. In our future work images and augmentation techniques can be leveraged to generalize the method’s ability for classifying a greater variety of traffic regulator classes.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference44 articles.

1. Landscape change and the urbanization process in Europe

2. The Costs of Road Infrastructure and Congestion in Europe;Link,2012

3. SmartRoad

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recognition of Intersection Traffic Regulations from Crowdsourced Data;ISPRS International Journal of Geo-Information;2022-12-23

2. Traffic Regulation Recognition using Crowd-Sensed GPS and Map Data: a Hybrid Approach;AGILE: GIScience Series;2022-06-10

3. TRAFFIC CONTROL RECOGNITION WITH AN ATTENTION MECHANISM USING SPEED-PROFILE AND SATELLITE IMAGERY DATA;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-06-01

4. Impact Assessing of Traffic Lights via GPS Vehicle Trajectories;ISPRS International Journal of Geo-Information;2021-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3