Abstract
In this paper, a novel building change detection approach is proposed using statistical region merging (SRM) and a shape context similarity model for Light Detection and Ranging (LiDAR) data. First, digital surface models (DSMs) are generated from LiDAR acquired at two different epochs, and the difference data D-DSM is created by difference processing. Second, to reduce the noise and registration error of the pixel-based method, the SRM algorithm is applied to segment the D-DSM, and multi-scale segmentation results are obtained under different scale values. Then, the shape context similarity model is used to calculate the shape similarity between the segmented objects and the buildings. Finally, the refined building change map is produced by the k-means clustering method based on shape context similarity and area-to-length ratio. The experimental results indicated that the proposed method could effectively improve the accuracy of building change detection compared with some popular change detection methods.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献