Endostatin 33 Peptide Is a Deintegrin α6β1 Agent That Exerts Antitumor Activity by Inhibiting the PI3K-Akt Signaling Pathway in Prostate Cancer

Author:

Liu Yang1ORCID,Wang Chang-Lin2,Pang Zhong-Qi1ORCID,Gao Ke1,Shen Lin-Kun1ORCID,Xu Wan-Hai2,Ren Ming-Hua1ORCID

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China

2. Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China

Abstract

Background: Prostate cancer (PCa) is the leading cause of death in men and has poor therapeutic outcomes. Methods: A novel endostatin 33 peptide was synthesized by adding a specific QRD sequence on the basis of the endostatin 30 peptide (PEP06) with antitumor activity. Then, bioinformatic analysis and subsequent experiments were performed to validate the antitumor function of this endostatin 33 peptide. Results: We found that the 33 polypeptides significantly inhibited growth, invasion and metastasis and promoted the apoptosis of PCa in vivo or vitro, which is more significant than PEP06 under the same conditions. According to 489 cases from the TCGA data portal, the α6β1 high expression group was closely associated with the poor prognosis (Gleason score, pathological N stage, etc.) of PCa and was mainly enriched in the PI3K-Akt pathway. Subsequently, we demonstrated that endostatin 33 peptide can down-regulate the PI3K-Akt pathway via the targeted inhibition of α6β1, thereby inhibiting the epithelial–mesenchymal transition and matrix metalloproteinase in C42 cell lines. Conclusion: The endostatin 33 peptide can exert antitumor effects by inhibiting the PI3K-Akt pathway, especially in tumors with a high expression of the integrin α6β1 subtype, such as prostate cancer. Therefore, our study will provide a new method and theoretical basis for the treatment of prostate cancer.

Funder

Natural Science Foundation of Heilongjiang Province

Heilongjiang Renxin Medical Assistance Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3