Discriminating Healthy Optic Discs and Visible Optic Disc Drusen on Fundus Autofluorescence and Color Fundus Photography Using Deep Learning—A Pilot Study

Author:

Diener Raphael1,Lauermann Jost Lennart1,Eter Nicole1,Treder Maximilian1

Affiliation:

1. Department of Ophthalmology, University of Muenster Medical Center, 48149 Muenster, Germany

Abstract

The aim of this study was to use deep learning based on a deep convolutional neural network (DCNN) for automated image classification of healthy optic discs (OD) and visible optic disc drusen (ODD) on fundus autofluorescence (FAF) and color fundus photography (CFP). In this study, a total of 400 FAF and CFP images of patients with ODD and healthy controls were used. A pre-trained multi-layer Deep Convolutional Neural Network (DCNN) was trained and validated independently on FAF and CFP images. Training and validation accuracy and cross-entropy were recorded. Both generated DCNN classifiers were tested with 40 FAF and CFP images (20 ODD and 20 controls). After the repetition of 1000 training cycles, the training accuracy was 100%, the validation accuracy was 92% (CFP) and 96% (FAF), respectively. The cross-entropy was 0.04 (CFP) and 0.15 (FAF). The sensitivity, specificity, and accuracy of the DCNN for classification of FAF images was 100%. For the DCNN used to identify ODD on color fundus photographs, sensitivity was 85%, specificity 100%, and accuracy 92.5%. Differentiation between healthy controls and ODD on CFP and FAF images was possible with high specificity and sensitivity using a deep learning approach.

Publisher

MDPI AG

Subject

General Medicine

Reference34 articles.

1. Optic disk drusen;Staubach;Surv. Ophthalmol.,2002

2. Drusen of the optic disk. A clinical and genetic study;Lorentzen;Acta Ophthalmol.,1996

3. Optic nerve head Drusen mimicking papilledema;Baehring;J. Neuro-Oncol.,2005

4. Distinguishing optic disc drusen from papilloedema;Hu;BMJ,2008

5. Optic Nerve Head Drusen: An Update;Palmer;Neuro-Ophthalmol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3