Abstract
Photogrammetric models have become a standard tool for the study of surfaces, structures and natural elements. As an alternative to Light Detection and Ranging (LiDAR), photogrammetry allows 3D point clouds to be obtained at a much lower cost. This paper presents an enhanced workflow for image-based 3D reconstruction of high-resolution models designed to work with fixed time-lapse camera systems, based on multi-epoch multi-images (MEMI) to exploit redundancy. This workflow is part of a fully automatic working setup that includes all steps: from capturing the images to obtaining clusters from change detection. The workflow is capable of obtaining photogrammetric models with a higher quality than the classic Structure from Motion (SfM) time-lapse photogrammetry workflow. The MEMI workflow reduced the error up to a factor of 2 when compared to the previous approach, allowing for M3C2 standard deviation of 1.5 cm. In terms of absolute accuracy, using LiDAR data as a reference, our proposed method is 20% more accurate than models obtained with the classic workflow. The automation of the method as well as the improvement of the quality of the 3D reconstructed models enables accurate 4D photogrammetric analysis in near-real time.
Funder
Ministry of Science, Innovation and Universities
H2020 Marie Skłodowska-Curie Actions
DFG
Subject
General Earth and Planetary Sciences
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献