Exploring PRISMA Scene for Fire Detection: Case Study of 2019 Bushfires in Ben Halls Gap National Park, NSW, Australia

Author:

Amici StefaniaORCID,Piscini Alessandro

Abstract

Precursore IperSpettrale della Missione Applicativa (Hyperspectral Precursor of the Application Mission, PRISMA) is a new hyperspectral mission by the ASI (Agenzia Spaziale Italiana, Italian Space Agency) mission launched in 2019 to measure the unique spectral features of diverse materials including vegetation and forest disturbances. In this study, we explored the potential use of this new sensor PRISMA for active wildfire characterization. We used the PRISMA hypercube acquired during the Australian bushfires of 2019 in New South Wales to test three detection techniques that take advantage of the unique spectral features of biomass burning in the spectral range measured by PRISMA. The three methods—the CO2-CIBR (continuum interpolated band ratio), HFDI (hyperspectral fire detection index) and AKBD (advanced K band difference)—were adapted to the PRISMA sensor’s characteristics and evaluated in terms of performance. Classification techniques based on machine learning algorithms (support vector machine, SVM) were used in combination with the visual interpretation of a panchromatic sharpened PRISMA image for validation. Preliminary analysis showed a good overall performance of the instrument in terms of radiance. We observed that the presence of the striping effect in the data can influence the performance of the indices. Both the CIBR and HFDI adapted for PRISMA were able to produce a detection rate spanning between 0.13561 and 0.81598 for CO2-CIBR and that between 0.36171 and 0.88431 depending on the chosen band combination. The potassium emission index turned out to be inadequate for locating flaming in our data, possibly due to multiple factors such as striping noise and the spectral resolution (12 nm) of the PRISMA band centered at the potassium emission.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3