The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems

Author:

Dobler GregoryORCID,Bianco Federica B.,Sharma Mohit S.,Karpf Andreas,Baur Julien,Ghandehari Masoud,Wurtele Jonathan,Koonin Steven E.

Abstract

We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (∼400 nm) to the infrared (∼13 micron) operating at cadences of ∼0.01–30 Hz (characteristically ∼0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants.

Funder

James S. McDonnell Foundation

U.S. Department of Energy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference191 articles.

1. 2018 Revision of World Urbanization Prospects,2018

2. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals;Batty,2007

3. The Size, Scale, and Shape of Cities

4. Modeling Cities and Regions as Complex Systems: From Theory to Planning Applications;White,2015

5. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3