Solar Extreme and Far Ultraviolet Radiation Modeling for Aeronomic Calculations

Author:

Nusinov Anatoliy A.ORCID,Kazachevskaya Tamara V.,Katyushina Valeriya V.

Abstract

Modeling the upper atmosphere and ionospheres on the basis of a mathematical description of physical processes requires knowledge of ultraviolet radiation fluxes from the Sun as an integral part of the model. Aeronomic models of variations in the radiation flux in the region of extreme (EUV) and far (FUV) radiation, based mainly on the data of the last TIMED mission measurements of the solar spectrum, are proposed. The EUVT model describes variations in the 5–105 nm spectral region, which are responsible for the ionization of the main components of the earth’s atmosphere. The FUVT model describes the flux changes in the 115–242 nm region, which determines heating of the upper atmosphere and the dissociation of molecular oxygen. Both models use the intensity of the hydrogen Lyman-alpha line as an input parameter, which can currently be considered as one of the main indices of solar activity and can be measured with relatively simpler photometers. A comparison of the results of model calculations with observations shows that the model error does not exceed 1–2% for the FUVT model, and 5.5% for EUVT, which is sufficient for calculating the parameters of the ionosphere and thermosphere.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3