Remote Sensing of Lake Water Clarity: Performance and Transferability of Both Historical Algorithms and Machine Learning

Author:

Rubin Hannah J.,Lutz David A.,Steele Bethel G.ORCID,Cottingham Kathryn L.ORCID,Weathers Kathleen C.,Ducey Mark J.,Palace MichaelORCID,Johnson Kenneth M.,Chipman Jonathan W.ORCID

Abstract

There has been little rigorous investigation of the transferability of existing empirical water clarity models developed at one location or time to other lakes and dates of imagery with differing conditions. Machine learning methods have not been widely adopted for analysis of lake optical properties such as water clarity, despite their successful use in many other applications of environmental remote sensing. This study compares model performance for a random forest (RF) machine learning algorithm and a simple 4-band linear model with 13 previously published empirical non-machine learning algorithms. We use Landsat surface reflectance product data aligned with spatially and temporally co-located in situ Secchi depth observations from northeastern USA lakes over a 34-year period in this analysis. To evaluate the transferability of models across space and time, we compare model fit using the complete dataset (all images and samples) to a single-date approach, in which separate models are developed for each date of Landsat imagery with more than 75 field samples. On average, the single-date models for all algorithms had lower mean absolute errors (MAE) and root mean squared errors (RMSE) than the models fit to the complete dataset. The RF model had the highest pseudo-R2 for the single-date approach as well as the complete dataset, suggesting that an RF approach outperforms traditional linear regression-based algorithms when modeling lake water clarity using satellite imagery.

Funder

National Aeronautics and Space Administration

Dartmouth College

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3