Estimation of Photosynthetic and Non-Photosynthetic Vegetation Coverage in the Lower Reaches of Tarim River Based on Sentinel-2A Data

Author:

Guo ZengkunORCID,Kurban AlishirORCID,Ablekim Abdimijit,Wu Shupu,Van de Voorde TimORCID,Azadi HosseinORCID,Maeyer Philippe DeORCID,Dufatanye Umwali Edovia

Abstract

Estimating the fractional coverage of the photosynthetic vegetation (fPV) and non-photosynthetic vegetation (fNPV) is essential for assessing the growth conditions of vegetation growth in arid areas and for monitoring environmental changes and desertification. The aim of this study was to estimate the fPV, fNPV and the fractional coverage of the bare soil (fBS) in the lower reaches of Tarim River quantitatively. The study acquired field data during September 2020 for obtaining the fPV, fNPV and fBS. Firstly, six photosynthetic vegetation indices (PVIs) and six non-photosynthetic vegetation indices (NPVIs) were calculated from Sentinel-2A image data. The PVIs include normalized difference vegetation index (NDVI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI), modified soil adjusted vegetation index (MSAVI), reduced simple ratio index (RSR) and global environment monitoring index (GEMI). Meanwhile, normalized difference index (NDI), normalized difference tillage index (NDTI), normalized difference senescent vegetation index (NDSVI), soil tillage index (STI), shortwave infrared ratio (SWIR32) and dead fuel index (DFI) constitutes the NPVIs. We then established linear regression model of different PVIs and fPV, and NPVIs and fNPV, respectively. Finally, we applied the GEMI-DFI model to analyze the spatial and seasonal variation of fPV and fNPV in the study area in 2020. The results showed that the GEMI and fPV revealed the best correlation coefficient (R2) of 0.59, while DFI and fNPV had the best correlation of R2 = 0.45. The accuracy of fPV, fNPV and fBS based on the determined PVIs and NPVIs as calculated by GEMI-DFI model are 0.69, 0.58 and 0.43, respectively. The fPV and fNPV are consistent with the vegetation phonological development characteristics in the study area. The study concluded that the application of the GEMI-DFI model in the fPV and fNPV estimation was sufficiently significant for monitoring the spatial and seasonal variation of vegetation and its ecological functions in arid areas.

Funder

the National Nature Science Foundation of China Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3