An Efficient Extended Targets Detection Framework Based on Sampling and Spatio-Temporal Detection

Author:

Yan Bo,Xu Na,Zhao Wenbo,Li Muqing,Xu Luping

Abstract

Excellent performance, real-time and low memory requirement are three vital requirements for target detection in high resolution marine radar system. Unfortunately, many current state-of-the-art methods merely achieve excellent performance when coping with highly complex scenes. In fact, a common problem is that real-time processing, low memory requirement and remarkable detection ability are difficult to coordinate. To address this issue, we propose a novel detection framework which bases its principle on sampling and spatiotemporal detection. The framework consists of two stages, coarse detection and fine detection. Sampling-based coarse detection is designed to guarantee the real-time processing and low memory requirements by locating the area where targets may exist in advance. Different from former detection methods, multi-scan video data are utilized. In the stage of fine detection, the candidate areas are grouped into three categories: single target, dense targets and sea clutter. Different approaches for processing the different categories are implemented to achieve excellent performance. The superiority of the proposed framework beyond state-of-the-art baselines is well substantiated in this work. Low memory requirement of the proposed framework was verified by theoretical analysis. Real-time processing capability was verified by the video data of two real scenarios. Synthetic data were tested to show the improvement in tracking performance by using the proposed detection framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3