Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations

Author:

Leake CarlORCID,Mortari DanieleORCID

Abstract

This article presents a new methodology called Deep Theory of Functional Connections (TFC) that estimates the solutions of partial differential equations (PDEs) by combining neural networks with the TFC. The TFC is used to transform PDEs into unconstrained optimization problems by analytically embedding the PDE’s constraints into a “constrained expression” containing a free function. In this research, the free function is chosen to be a neural network, which is used to solve the now unconstrained optimization problem. This optimization problem consists of minimizing a loss function that is chosen to be the square of the residuals of the PDE. The neural network is trained in an unsupervised manner to minimize this loss function. This methodology has two major differences when compared with popular methods used to estimate the solutions of PDEs. First, this methodology does not need to discretize the domain into a grid, rather, this methodology can randomly sample points from the domain during the training phase. Second, after training, this methodology produces an accurate analytical approximation of the solution throughout the entire training domain. Because the methodology produces an analytical solution, it is straightforward to obtain the solution at any point within the domain and to perform further manipulation if needed, such as differentiation. In contrast, other popular methods require extra numerical techniques if the estimated solution is desired at points that do not lie on the discretized grid, or if further manipulation to the estimated solution must be performed.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems;Advances in Engineering Software;2024-11

2. Extremization to fine tune physics informed neural networks for solving boundary value problems;Communications in Nonlinear Science and Numerical Simulation;2024-10

3. Multilevel domain decomposition-based architectures for physics-informed neural networks;Computer Methods in Applied Mechanics and Engineering;2024-09

4. Phase-field modeling of fracture with physics-informed deep learning;Computer Methods in Applied Mechanics and Engineering;2024-09

5. Modeling and Estimation of Continuous Flexible Structure Using Theory of Functional Connections;Journal of Guidance, Control, and Dynamics;2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3