Genome-Wide Analysis, Characterization, Expression and Function of SERK Gene Family in Phyllostachys edulis

Author:

Zhang Pengwei1,Huang Zhinuo1,Zhang Huicong1,Lu Haiwen1,Li Qimin1,Zhuo Juan1,Wei Hantian1,Hou Dan1,Lin Xinchun1

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hang’zhou 311300, China

Abstract

Somatic mmbryogenesis receptor-like kinase (SERK) is a kind of protein kinase widely distributed in plants. It plays a vital role in regulating plant immunity and responses to abiotic stress. The SERK gene family has not been systematically studied in moso bamboo (Phyllostachys edulis). In this study, we identified six PeSERK genes and classified them into four groups in moso bamboo. PeSERKs of each group shared a highly similar distribution of conserved domains. Cis-element analysis indicated that many stress and hormone response elements are distributed on the promoters of PeSERKs. Moreover, we analyzed the chromosomal locations and synteny of PeSERKs. A collinear gene pair, PeSERK1 and PeSERK3, shared a high similarity, 93%, and the expression analysis showed similar expression patterns. Compared to PeSERK3, PeSERK1 had a higher expression in all tissues examined and all stages of shoot development. PeSERK3 was expressed mainly in leaf sheaths but with a low expression in other tissues. The expressions of PeSERKs were analyzed in seedlings under abiotic and hormone treatments using qRT-PCR. Except for PeSERK1 and PeSERK3, the expressions of most genes were downregulated or had no big difference at 0 h of drought treatment. Under drought treatment, PeSERK1 and PeSERK3 had a similar expression trend of increasing first and then decreasing. However, the expression level of PeSERK3 was higher than PeSERK1 after 3 h of drought treatment. PeSERK3 might play a more vital role in the drought stress response than PeSERK1. This study provides a theoretical basis for the further study of the SERK response to stress conditions in moso bamboo.

Funder

Foreign Expert Project of China

Scientific Research and Development Fund Project of ZAFU University

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3